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Interaction-assisted propagation of Coulomb-correlated
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Abstract. A two-band model of a disordered semiconductor is used to analyze dynamical interaction
induced weakening of localization in a system that is accessible to experimental verification. The results
show a dependence on the sign of the two-particle interaction and on the optical excitation energy of the
Coulomb-correlated electron-hole pair.

PACS. 73.20.Dx Electron states in low-dimensional structures (superlattices, quantum well structures and
multilayers) – 72.15.Rn Localization effects (Anderson or weak localization) – 78.66.-w Optical properties
of specific thin films, surfaces, and low-dimensional structures

The problem of two interacting particles (TIP) in a ran-
dom potential is an excellent paradigm for the general
question of the interplay of disorder and interactions in
many-body systems. First addressed in a 1990 paper by
Dorokhov [1], the subject has been especially well stud-
ied since Shepelyansky’s 1994 publication [2]. Considering
the TIP localization length l2, most authors [2–6] obtain
an interaction-induced increase l2 > l1 over the single-
particle localization length l1 independent of the sign of
the interaction, with l2/l1 ∼ la1 and a = 1 or a = 0.65 [6].
Here, l1 and l2 are measured in units of the lattice con-
stant of a one-dimensional Anderson chain. Similar results
have been obtained for TIP in a quasiperiodic chain [7].
The independence of the predicted effect on the sign of
the interaction is an especially intriguing feature.

Early work approached this problem using a wide va-
riety of theoretical techniques and focused on establishing
the existence of the TIP-effect, while more recent work
has dealt with quantitative details like scaling behaviour
and the influence of interaction range, strength and sign
[1–6,8–11].

Existing works comprise purely theoretical case studies
since the model of just two particles in a single band does
not correspond to any real physical situation. Obviously,
experimental study is needed to promote further under-
standing of the TIP problem, and would put the presently
rather academic discussion on a firm physical basis. Ex-
ploiting the fact that the coherent spatio-temporal dynam-
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ics of Coulomb-correlated electron-hole pairs is strongly
influenced by the two-particle interaction, we show in the
present paper that the TIP localization properties should
be accessible to modern ultrafast optical techniques. The
corresponding spatial and temporal scales are on the or-
der of sub-µm and 1 ps. Our numerical studies are based
on integration of the semiconductor Bloch equations and
include no a priori assumptions about energy hierarchies
or interaction matrix elements. The calculations were per-
formed for a disordered 1D semiconductor quantum wire,
where localization effects are most important. Despite its
simplicity, this model system contains already all essen-
tial ingredients to describe the dynamics following opti-
cal excitation even in disordered systems of higher dimen-
sion [12]. The model parameters have been given values
that resemble those of realistic disordered semiconductor
quantum wires. Additional physical parameters (excita-
tion energy, spectral pulse width, screening length, differ-
ent masses of the two particles) allow the study of a wide
variety of observable phenomena.

In our numerical calculations we investigate the
spreading of an electron-hole wave packet after local ex-
citation by an optical pulse. Here the interaction is given
by the long-range Coulomb potential which, besides pro-
ducing bound states (excitons) near the edges of the ex-
citation spectrum, also correlates the electrons and holes
in the pair continuum. Previous theoretical studies of the
spatial-temporal dynamics of wave packets formed from
excitons show that their motion is rather limited in the
presence of scattering [13]. This result is recovered by our
present calculations. Here we focus our interest on the
dynamics of optically generated wave packets in the pair
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continuum. We find that the excitation conditions in the
presence of particle-particle interaction influence the car-
rier dynamics dramatically. In addition, and in contrast
to some previous claims in the literature, we find that
the sign of the interaction has a pronounced effect on the
spatio-temporal dynamics.

We consider a 1D array of sites i with diagonal disorder
in both the valence band (vb) and the conduction band
(cb). The site energies εvi and εci corresponding to the vb
and the cb, respectively, are randomly distributed over the
interval [−W/2,W/2] and are uncorrelated. The nearest
neighbor cb levels are coupled by the tunneling term −Jc,
the vb levels by −Jv. We use the Coulomb interaction in
its monopole-monopole form [14] with matrix elements

Vij = −
U

4πεε0

e2

rij + α
(1)

which has been regularized in order to cope with the
pathological singularity in one dimension. The constant
α has been chosen to be 5 times the lattice constant [15].

The total Hamiltonian is written as Ĥ = Ĥ0 + ĤI + ĤC,
where Ĥ0 describes the vb and cb band structure, ĤI rep-
resents the semiclassical interaction with the electromag-
netic field Ei(t) in dipole approximation, and ĤC defines
the electron-electron interaction term [16,17].

In the following, we assume a local initial excitation
at the central site i = 0, which is modeled by setting
µi = δi,0 for the local dipole matrix element in ĤI. The
optical polarization pij(t) is obtained from the equation

of motion for the polarization operator p̂ij = d̂iĉj , which
is coupled to the equation of motion of the electron and
hole intraband quantities n̂e

ij = ĉ+i ĉj and n̂h
ij = d̂+

i d̂j , re-

spectively, where the operators ĉ+i , ĉi (d̂+
i , d̂i) describe the

electron (hole) creation and annihilation operators at site
i. The equation of motion for the expectation values pij(t)

and ne,h
ij (t) is treated using the well-known semiconductor

Bloch equations for pij(t) and ne,h
ij (t) in the real-space rep-

resentation [17]. Detailed derivations of the semiconductor
Bloch equations are given in [14] and the textbook [18].
As we are interested in small excitation densities, we write
only the equation for pij in the lowest (linear-response) or-
der in the exciting field

∂t pij = − i
(
εe
i − ε

h
j − Vij

)
pij + i

N∑
l=1

(
Je pil + Jh plj

)
+ iµjEj(t) δij . (2)

Using the conservation laws ne
ij =

∑
l plj p

∗
li and nh

ij =∑
l pjl p

∗
il valid in this lowest order [19], we obtain the

intraband quantities.
Instead of studying a rather academic localization

length which describes only the asymptotic behavior of
wave functions, we calculate the experimentally more rel-
evant participation number Λ(t) = (

∑
i n

2
ii)
−1. Here nii

stands for either ne
ii or nh

ii. With the packet localized at
site 0, nii = δi0 and Λ = 1, while for an excitation uni-
formly extended over the sample of N sites, nii = 1/N
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Fig. 1. Absorption spectrum of the ordered chain for U =
0,+1,−1 and for equal electron and hole masses (Je = −Jh =
20 meV). The spectrum of the optical pulse with Eexc =
80 meV and τ = 100 fs is also given.

and Λ = N . Our calculations were performed for chains
containing N = 240 sites. Boundary effects can easily be
identified in the temporal evolution of Λ and do not play
any role as long as Λ < N/2. All the data presented are
free of finite-size effects.

The transform-limited optical pulse is defined by its
mean energy ~ω and the temporal width τ of the Gaussian
envelope ∼ exp{−(t/τ)2}. We define an excitation energy
Eexc referred to the bottom of the (ordered) absorption
band, i.e. Eexc = ~ω −Egap. All results are given for τ =
100 fs, which corresponds to an energetic width (FWHM)
of 22 meV.

To make contact with the previous work where two
particles in a single band were placed initially at a single
site, we first consider the situation of a symmetric band
structure with Je = −Jh = 20 meV. The absorption spec-
tra with and without Coulomb interaction are shown in
Figure 1 for the ordered case. The peak structure near the
absorption edge is due to the excitonic resonances. Upon
changing the sign of the Coulomb interaction, the bound
state resonances are shifted from the bottom to the top of
the absorption spectrum.

As the dynamics of electrons and holes are the same
for the assumed symmetric band structure, we restrict our
discussion to the electrons. We first discuss the situation
in the absence of Coulomb interaction. Figure 2 shows the
corresponding Λe(t) for two different disorder parameters
W after excitation by a pulse at Eexc = 80 meV. The exci-
tation is centered in the absorption spectrum as indicated
in Figure 1. Λe(t) evolves exponentially with rise time less
than 1 ps. Here and below, we take the saturation value as
a measure of localization. As expected, it decreases rapidly
with increasing disorder. We find Λ ∼W−1.3 as W is var-
ied over the range 40 meV to 240 meV for J = 20 meV.
A discussion of related exponents can be found in [20].
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Fig. 2. Temporal evolution of the participation number Λ after
excitation by a 100 fs pulse for the interacting (solid lines) and
noninteracting (dotted lines) cases. The disorder parameters
are W = 20 meV and W = 60 meV.

Figure 2 contrasts the interacting and noninteracting
behavior for two values of disorder and reveals three re-
markable features. (i) The interaction clearly leads to a re-
duction of the localization of the particles. We have care-
fully checked that the saturation value of Λe(t) at long
times is not due to a finite size effect; values ≤ N/2 are
fully converged with respect to the sample size. (ii) While
the participation number in the noninteracting situation
evolves exponentially and saturates quickly (< 1 ps), the
interacting wave packets evolve diffusively and reach their
saturation values at much longer times. (iii) The sign of
the Coulomb interaction (U = ±1) has virtually no in-
fluence on the propagation of the particles in this case.
The same is true if we apply a very short excitation pulse
which spectrally covers the whole band. The spectral posi-
tion of the central pulse frequency within the band is then
completely irrelevant. In this situation the excited parti-
cle pair-wave packet is initially situated exclusively at site
i = 0. These observations are not new [2–4]. However, (iii)
has been questioned [6] and (ii) remained unexplained.

In all cases where Je and Jh are of comparable mag-
nitude we find that the participation number is enhanced
by the interaction. In a mean field picture, it is the tem-
poral fluctuations of the field originating from the part-
ner particle which destroy the coherence necessary to
produce localization. This explanation in terms of a
dynamic-correlation-induced weakening of the influence of
disorder can be nicely corroborated by a number of case
studies.

We note that contrary to previous statements, the in-
dependence of the sign of the Coulomb interaction is not
a general feature, but is a consequence of the imposed
electron-hole symmetry. In particular, displacing the cen-
tral frequency of excitation pulses from the center of the
absorption band, the situation changes completely. Note
that this choice of the excitation frequency corresponds to
the realistic situation where electron-hole pairs are excited
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Fig. 3. Temporal evolution of Λe (upper traces) and Λh (lower
traces) for excitation in the lower half of the continuum and
U = 0,±1. Je = −2Jh = 20 meV, W = 80 meV.

close to the absorption edge in semiconductors. Figure 3
shows the participation number Λ for light electrons and
heavy holes, i.e., Je = −2Jh = 20 meV. The central ex-
citation energy of the pulse is placed in the lower part
of the pair continuum at Eexc = 40 meV. Results aver-
aged over 60 realizations are shown for W = 80 meV and
U = 0,±1. The results are invariant under reflection of the
excitation frequency through band center and simultane-
ous switching of the sign of the interaction. This reflects
the approximate symmetry (within fluctuations in the site
energy distribution) of the Hamiltonian.

It is at first sight counterintuitive that the enhance-
ment of the participation number is larger for attractive
(U = −1) than for repulsive (U = +1) interaction. This
behavior can be attributed to the fact that for attractive
interaction and positive masses (i.e. for excitation into
the lower half of the excitation continuum) the electron-
hole pair tends to stay closer together. The fluctuating
field due to the accompanying particle is then more pro-
nounced as compared to the case of repulsive interaction,
where the mutually repulsive particle pair tends to be sep-
arated. Hence the dynamic-correlation-induced weakening
of the influence of disorder is less effective for repulsive
than for attractive interaction.

Completely different behavior is found for a static field.
We consider an infinitely heavy hole, Jh = 0, which now
produces a static field, and excitation at the (interaction-
free) band center. For both attractive and repulsive in-
teractions, the participation number is decreased with
respect to the noninteracting case. This result is easily un-
derstood without invoking fluctuating fields since at band
center electron states have maximal extent. In the pres-
ence of interaction, off-center states are admixed leading
to greater confinement. The effect of the static interaction
is thus opposite to that of a fluctuating field [21].

The strong retardation of the saturation in the inter-
acting case can also be understood in our picture. Whether
with or without interaction, the electron and hole wave
packets spread over a range given by the single-particle
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levels involved in the optical transition just after the short
excitation pulse. The fluctuating Coulomb field due to the
partner particle then leads to an increase of the spread of
the wave packets. As a consequence, the average fluctuat-
ing field acting on a given particle is reduced, which in turn
tends to slow further spreading, eventually leading to the
observed saturation at long times. The neglect of phonon
interactions in our model is justified a posteriori. Figure 2
makes it clear that the time scales between 100 fs and
' 3 ps are fully sufficient for experimental observations
while near-band-edge acoustic phonon scattering occurs
on longer time scales [22].

Previous work [2–4] on the TIP problem suggests a
scaling of the two-particle localization length l2/l1 ∼
la1(U/J)2, with a = 1 or a = 0.65 [6]. Our results for
the participation number do not obey such a scaling law
as far as the dependence on U is concerned. We obtain
for electrons and holes, both for attractive and repulsive
interaction, Λ(U = ±1)/Λ(U = 0) ∼ Λ(U = 0)b with
b = 0.65±0.3. For electrons and attractive interaction the
present model predicts Λe ∼W−c with a larger exponent
c ' 2.2 compared to c = 1.3 for the noninteracting case.

In conclusion, we have studied the localization of a pair
of interacting particles in a situation which, in principle,
is accessible to experiments. Optical excitation in the pair
continuum of a disordered one-dimensional semiconductor
with long-range Coulomb interaction has been considered.
Starting from a tight-binding description, the temporal
evolution of the participation numbers of the electron and
the hole wave packets has been calculated by a direct so-
lution of the equation of motion of the correlated material
excitation within linear response with regard to the ex-
citing laser field. The participation number increases with
interaction for both attractive and repulsive interaction.
We find that in general the degree of delocalization de-
pends strongly on the sign of the interaction, in contrast
to previously published predictions. The sign of the inter-
action becomes irrelevant (even if the masses of electrons
and holes are different) only for two special situations: ex-
citation in the center of the pair continuum, or excitation
of the whole band. We have checked that this result is in-
dependent of the assumed form of the interaction and that
it remains true also for the short-range interactions stud-
ied in the literature. Compared to the single-band mod-
els treated in the past, the present semiconductor model
admits a richer variety of phenomena, which can be qual-
itatively explained within a mean-field picture. We em-
phasize that the enhancement of the participation num-
ber is clearly not due to a finite size effect, and that it
should be experimentally observable. Ultra-short time-of-
flight experiments on arrays of semiconductor quantum
wires in the coherent limit using pump-probe techniques
are a promising option. The enhancement should also be
observable in disordered semiconductor quantum wells. In
this case we expect the enhancement to be even more pro-
nounced, since, in contrast with one-dimensional systems,
only states close to the band edge are essentially affected
by the disorder in two dimensions, so that the interaction
will lead to coupling with rather extended states.

This work is supported by DFG, SFB 383 and 341, the Leib-
niz Prize, OTKA (T021228, T024136, F024135), SNSF (2000-
52183.97), and the A.v. Humboldt Foundation. Discussions
with A. Knorr and F. Gebhard are gratefully acknowledged.

References

1. O.N. Dorokhov, Zh. Eksp. Teor. Fiz. 98, 646 (1990) [Sov.
Phys. JETP 71, 360 (1990)].

2. D.L. Shepelyansky, Phys. Rev. Lett. 73, 2607 (1994).
3. Y. Imry, Europhys. Lett. 30, 405 (1995).
4. Ph. Jacquod, D.L. Shepelyansky, Phys. Rev. Lett. 75, 3501

(1995); Ph. Jacquod, D.L. Shepelyansky, O.P. Sushkov,
Phys. Rev. Lett. 78, 923 (1997).

5. Ph. Jacquod, D.L. Shepelyansky, Phys. Rev. Lett. 78, 4986
(1997).

6. K. Frahm, A. Müller-Groeling, J.-L. Pichard, D.
Weinmann, Europhys. Lett. 31, 169 (1995).

7. S.N. Evangelou, D.E. Katsanos, Phys. Rev. B 56, 12797
(1997).

8. K. Frahm, A. Müller-Groeling, Europhys. Lett. 32, 385
(1995).

9. F. von Oppen, T. Wettig, J. Müller, Phys. Rev. Lett. 76,
491 (1996).
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